
ARTICLE IN PRESS
0360-1323/$ - se

doi:10.1016/j.bu

�Correspond
E-mail addr

Please cite th

doi:10.1016/j.
Building and Environment ] (]]]]) ]]]–]]]

www.elsevier.com/locate/buildenv
Model-based demand-limiting control of building thermal mass

Kyoung-ho Leea, James E. Braunb,�

aKorea Electric Power Research Institute, Korea Electric Power Corporation, Korea
bSchool of Mechanical Engineering, Purdue University, 140 S. Intramural Drive, West Lafayette, IN 47907 2031, USA

Received 23 May 2007; received in revised form 8 October 2007; accepted 12 October 2007
Abstract

This paper describes the development and evaluation of a model-based approach for minimizing peak cooling demand using energy

storage inherent in building structures. On any day where the strategy is invoked, the building is precooled with zone temperature

setpoints at the low end of comfort prior to a demand-limiting (DL) period. The zone temperatures are then adjusted upwards during the

demand-limiting period following a trajectory that keeps the peak cooling load below a specified target. The cooling demand target and

setpoint trajectory are determined using a building model that is trained using field data. The overall approach was demonstrated for a

building representative of a small commercial facility. The first step involved training the inverse model using a few weeks of hourly data.

The model was then used to study the potential for peak load reduction and to determine setpoint trajectories that were implemented at

the site. The demand-limiting strategy resulted in approximately 30% reductions in peak cooling loads compared to night setup control

for a 5-h on-peak period of 1 PM to 6 PM.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is generally necessary to consider the effect of thermal
storage in building structures to estimate cooling requirements
for sizing equipment. In particular, concrete floors, walls, and
roofs used in commercial buildings dampen the effects of heat
gains to the structure on the resulting gains to the interior air,
leading to reduced peak cooling loads compared to less
massive structures [1]. It is possible to obtain additional
reductions in peak cooling through adjustments in zone
temperature setpoints within bounds of thermal comfort.

Fig. 1 qualitatively compares zone temperature setpoint
and cooling load variations for three different control
strategies: conventional night-setup (NS) control, load-
shifting control, and demand-limiting (DL) control.
With NS control, the setpoint temperature is typically
maintained in the middle of the comfort range during
occupied periods and set up to a high setpoint during
unoccupied periods. This strategy tends to minimize the
e front matter r 2007 Elsevier Ltd. All rights reserved.
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total integrated cooling load and is the most common
strategy for commercial buildings. Load-shifting control
uses precooling (PC) with a setpoint temperature near the
lower end of the comfort range prior to the occupied, on-
peak period and then resets the setpoint to a fixed setpoint
near the higher end of comfort during the on-peak period.
As a result of the cooled thermal mass, less heat gain occurs
to the air during the hours following the rise in setpoint
than occurs for NS control. As the temperature of the
building thermal mass increases, the effect of heat
absorption decreases resulting in an increase in cooling
load. This control strategy maximizes use of stored energy
in the building mass and is appropriate for minimizing
on-peak period electrical energy charges. With demand-
limiting control, the building is precooled prior to an on-
peak or critical peak-pricing period and then setpoints are
adjusted in an optimal way so that the absorbed energy
into the building thermal mass is controlled and the peak
cooling load is minimized. This type of strategy is
appropriate for minimizing on-peak demand charges or
for use in a utility program where the utility takes active
control for the end-user during periods of critical demand.
g control of building thermal mass. Building and Environment (2007),
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Nomenclature

A area (m2 or ft2)
A coefficient matrix in the state space representa-

tion
B coefficient matrix in the state space representa-

tion
C capacitance (J/K or Btu/1F)
C coefficient matrix in the state space representa-

tion
DL demand limiting control strategy
D coefficient matrix in the state space representa-

tion
Erms RMS error (%)
E scalar transfer function coefficients for past

histories of heat flow
G radiation flux (W/m2 or Btu/h ft2)
h convective heat transfer coefficient (W/m2K or

Btu/h ft2 1F)
kt thermal conductivity (W/mK or Btu/h ft 1F)
N number
NS night-setup control strategy
PC precooling control strategy
PLR peak load ratio
Q rate of heat transfer (W or Btu/h)
Qb rate of instantaneous heat gain to the building

air (W or Btu/h)
Qc,k calculated cooling load at time step k (W or

Btu/h)
Qm,k measured cooling loads at time step k (W or

Btu/h)
Qm,max maximum measured load during testing period

(W or Btu/h)
R thermal resistance (K/W or 1Fh/Btu)
S series of row vectors containing transfer func-

tion coefficients for past histories of heat flow
T temperature (1C or 1F)
t time (h)

u vector of input variables
x vector of state variables
Y vector of output variables

Greek

teff effective window transmittance for solar radia-
tion

r density (kg/m3 or lb/ft3)

Subscripts

a ambient
avg average
b building
c building cooling load
cool cooling capacity
dl DL control
e external wall
eff effective
f floor or final
g ground
g, rad radiative internal heat gain
g, conv convective internal heat gain
i internal or initial
k time stage
max maximum
ns night-setup control
occ occupied period
op on-peak period
r roof and ceiling
sol solar
test test period
unocc unoccupied period
w window
x state variable
z zone
zo adjacent zone
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As noted by Braun [2], there are four opportunities for
reducing operating costs associated with load-shifting and
demand-limiting strategies: (1) use of low temperature
nighttime air for ventilation precooling, (2) improved
mechanical cooling system efficiency due to more favorable
operation at lower ambient and part-load conditions,
(3) reduction in on-peak electrical energy charges, and
(4) reductions in on-peak electrical demand charges. The
first two opportunities lead to reduced building energy usage,
whereas the second two incentives change the time variation
in electrical energy requirements but can result in increased
overall usage due to lower average zone temperature
setpoints. However, an increase in electrical energy usage at
the building can actually result in a reduction in primary
energy usage at the power plant if the electrical energy is used
at times of lower power plant capacity when more efficient
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin

doi:10.1016/j.buildenv.2007.10.009
equipment is employed. This is one of the reasons that
electric utilities provide rates that encourage users to reduce
electrical usage and peak demand during on-peak periods.
The current paper addresses control strategies for achieving
demand-limiting control and not load-shifting control.
There have been a number of studies that have considered

the impact of zone temperature setpoint adjustments on
load shifting and peak load reduction, including studies by
Braun [2], Ruud et al. [3], Rabl and Norford [4], Reddy et al.
[5], Keeney and Braun [6,7], Braun et al. [8], and Xu et al.
[9,10]. In particular, these studies demonstrated very
significant potential for peak demand reduction when
setpoints were adjusted in an optimal manner. However,
these papers did not present general approaches for
determining setpoint trajectories that minimize peak elec-
trical power or cooling load.
g control of building thermal mass. Building and Environment (2007),
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The current paper describes development of a model-
based demand-limiting control strategy that utilizes an
inverse building model presented by Chaturvedi and Braun
[11]. The use of an inverse model trained with field data
allows determination of setpoint trajectories that are near-
optimal for a specific building. The overall approach was
demonstrated and evaluated for a building representative of
a small commercial facility. The inverse model was trained
using hourly data from a previous study. The model was
then used to study the potential for peak load reduction and
to determine setpoint trajectories that were implemented at
the site. Measured cooling loads for demand-limiting
control were compared with those for night setup control
to evaluate peak load reduction. In addition, an occupant
comfort survey was performed. Details of the experiments
and results were previously presented by Lee and Braun [12],
whereas the current paper focuses on the method develop-
ment and performance evaluation.

2. Description of test building

2.1. Description of building

The facility used in this study is the Energy Resource
Station (ERS) building that houses the Iowa Energy Center
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin
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(see [13] for a detailed description). The building includes a
set of unoccupied test rooms that are well instrumented for
comparative testing as well as occupied areas for building
employees. Fig. 2 shows a schematic floor plan of the ERS
building that identifies the test rooms and occupied
areas. The eight test rooms are organized in identical
pairs (labeled ‘‘A’’ and ‘‘B’’) with three sets of zones having
one exterior wall (east, west, and south) and one set
that is internal. Collectively, the four pairs of zones are
representative of a small commercial building. Each test
room has 25.55m2 (274.97 ft2) of floor area and the
ceiling is 2.59m (8.5 ft) high. The height of plenum zones
above the test zones is 1.68m (5.5 ft). The exterior zones
have 6.87m2 (74 ft2) of window area. No blinds were
used. In this study, the test zones were used for evaluating
peak load reductions for demand-limiting, whereas
the occupied areas were used for evaluating occupant
comfort. The occupied areas are composed of office
space, a display room, a computer center, two classrooms,
service rooms, a media center, a reception space, and a
mechanical room. The locations of subjects in the occupied
areas who participated in the comfort survey are depicted
in Fig. 2.
Lee and Braun [12] give detailed information regarding

construction materials and internal gains for the test rooms
within the ERS building. The exterior walls, floor, and roof
are relatively heavyweight. However, most of the thermal
mass is not well connected in a thermal sense to the interior
air. The exterior walls have 10.16 cm (4 in) pre-cast
concrete panels on the outside but are separated from the
internal space by an air gap, insulation, and gypsum. The
roof utilizes 20.32 cm (8 in) pre-cast cored concrete panels
but is separated from the internal space by a return
and acoustic tiles. The floors are carpeted. Furthermore,
there is no additional internal mass within the test rooms in
the form of internal walls or furnishings that would
normally be found in commercial buildings. In addition
to lighting internal gains, internal gains due to equipment
g control of building thermal mass. Building and Environment (2007),
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(e.g., computers) and people were simulated using base-
board electric heaters. There were no occupants present
within the test rooms during testing. The combination of
test rooms is thought be representative of a small
commercial building in terms of size, surface area-to-
volume ratio, internal gains, and coupling between the
thermal mass and zone air.

Braun et al. [14] used the ERS building to demonstrate
the potential for load shifting associated with a simple
building thermal mass precooling strategy. The test was
performed for 17 days in August of 2001. These data were
used for training the inverse model for the current paper.
2.2. Data measurement

Weather data were provided by a weather station
located at the ERS [13], including outdoor air dry-bulb
temperature and relative humidity, wind speed and
direction, atmospheric pressure, total normal incidence
solar flux, and global horizontal solar flux. Table 1 shows
sensor accuracy for measurements from the weather
station.

Test room data included room air temperature and
supply air temperature and flow rate, whose accuracies are
listed in Table 2. Test room cooling loads were calculated
using these three measurements. The supply air tempera-
ture was measured using an array of 4 platinum 1000O
RTD probes. An air temperature RTD probe was located
on a stand near the center of each test room to measure
room air temperatures. The air flow rate was determined
from a velocity pressure difference measured using a flow
ring and differential pressure sensor at the inlet to the VAV
box. All data used in this study were averaged over an
hourly interval.
Table 1

ERS weather station measurement accuracy

Name Accuracy

Outdoor air temperature 70.1 1C (70.18 1F)

Outdoor air humidity 72%

Wind velocity 70.45m/s (71mph)

Wind direction 711

Normal incidence solar flux 70.5% reading

Global horizontal solar flux 70.5% reading

Atmospheric pressure 70.75mbar

Table 2

Test room measurement accuracy

Name Accuracy

Room temperature 70.14 1C (70.25 1F)

Room supply air

temperature

70.14 1C (70.25 1F)

Room supply air flow

rate

71.13m3/min (740 cfm) for east, south, and

west rooms

70.71m3/min (725 cfm) for interior rooms

Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin
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3. Dynamic inverse building model

3.1. Model development

Fig. 3 shows the thermal network employed for the
inverse model of the ERS building that was developed from
the model of Chaturvedi and Braun [11]. All test zones
(west, east, south, and interior rooms) were modeled as a
single zone using a single external wall, an internal wall, a
roof and a floor. Predicted and measured cooling loads
were for the combined test rooms at the ERS, which is
representative of a small commercial building.
Each of the walls was represented with two capacitors

and three resistors. It was assumed that solar radiation
through windows was absorbed only on the floor. Since
internal radiation is due to lights located on the ceiling,
internal radiative gains were distributed only to the walls
and floor. Infiltration and radiation between the building
outside surface and night sky were not considered. The
temperature in the adjacent occupied areas, Tzo, was
assumed to be equal to the temperature within the test
rooms at all times, Tz.
Using an energy balance at each node having a

capacitor, a state-space formulation was set up for the
building model as described by Chaturvedi and Braun [11]:

dxb

dt
¼ Abxb þ Bbub, (1)

Yb ¼ Qb ¼ Cbxb þDbub, (2)

where Qb is the rate of instantaneous heat gain to the
building air, Ab, Bb, Cb and Db are matrices and vectors of
coefficients determined by the resistors and capacitors, and
xb and ub are vectors of states and inputs given by

xT
b ¼ ½T r1;T r2;Te1;Te2;T f1;T f2;T i1;T i2�; (3)

uT
b ¼ ½Tz;Ta;Tg;Qsol;r;Qsol;e;Qg;rad;f ;Qg;rad;e;Qg;rad;i,

�Qsol;f ;Qg;conv�. ð4Þ
Ta

Ta

Ta
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Fig. 3. Thermal network for inverse building model.
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The eight state variables arise from having two nodal
temperatures in each of the four structural elements. The
10 input variables are zone temperature, ambient tempera-
ture, ground temperature, solar radiation absorbed on
external walls and on the roof, internal radiative gains for
the floor, external walls, and internal walls, solar radiation
transmitted through windows that is absorbed on the floor,
and internal convective gains to the interior air. The
ground temperature was assumed constant and was
estimated using experimental results from Thomas and
Rees [15] and Zhou et al. [16] to be 17.5 1C (63.5 1F).
Internal radiative gains were distributed assuming an equal
heat flux to the interior surfaces of the walls and floor.
Lighting was assumed to be 90% radiative and 10%
convective, whereas the heaters used to simulate other
internal gains were assumed to be 5% radiative and 95%
convective.

The state-space formation given in Eqs. (1) and (2) only
considers transients associated with the building structure
and can be used to estimated the heat gain to the air for a
specified zone temperature. A separate energy balance on
the air is used to determine sensible zone cooling loads
when considering zone temperature transients.

Cz;eff
dTz

dt
¼ Qb �Qc, (5)

where Cz,eff is an effective zone thermal capacitance
involving the zone air and internal mass and Qc is sensible
cooling load.

The state-space representation is solved assuming a 1-h
time interval using the methodology of Seem et al. [17] to
obtain a comprehensive transfer function for heat gain in
terms of the input variables and previous heat gains as

Qb;k ¼
XNx

j¼0

Sb;jub;k�j

 !
�

XNx

j¼1

eb;jQb;k�j

 !
, (6)

where the matrix Sb,j and vector eb,j contain transfer
function coefficients determined using Ab, Bb, Cb, and Db,
The subscript k�j denotes the time interval associated
with the inputs and net air heat gain. This time-series
equation relates the current heat gain to current and
previous inputs and previous heat gains. For application of
Eq. (6), the inputs and heat gains are assumed to be
constants over each time interval, evaluated using average
values.

Eq. (6) provides an estimate for average heat gain over a
given interval with a specified zone temperature setpoint. If
different setpoints are employed for the start and end of the
interval, the setpoint is assumed to vary linearly and the
average zone temperature used in Eq. (6) is determined as

T z;k ¼
T z;k;i þ T z;k;f

2
, (7)

where the subscripts i and f denote initial and final values
for interval k.
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin
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Eq. (5) is approximated according to

Cz;eff
T z;k;i � T z;k;f

Dt
¼ Qb;k �Qc;k, (8)

where Dt is the time step for the model
Eq. (8) is used along with Eqs. (6) and (7) to determine

the average zone sensible cooling rate for a given interval
for specified initial and final setpoint temperatures. If the
required cooling rate is negative, then there is no cooling
requirement and the zone temperature should ‘‘float’’
during this interval. For this case, the zone sensible cooling
load Qc,k is set to zero and Eqs. (6)–(8) are resolved for the
floating final and average zone temperatures over the
interval, Tz,k,f and Tz,k.

3.2. Model training

The training algorithm is divided into two phases, a
global search and a local search as described by Chaturvedi
and Braun [11]. The global search uses a systematic search
to determine reasonable values of the building resistors and
capacitors within bounds determined from a crude building
description. The local search uses a local non-linear
regression method to further improve the R and C

estimates by minimizing the root-mean-squared error
between measured and calculated cooling loads for the
training duration. The combination of a local and a global
phase provides a robust algorithm for determining an
accurate model and only requires minimal preliminary
building information. Parameters determined through
global and local searches are: effective window transmit-
tance for solar radiation, effective zone capacitance, and
the thermal resistances and capacitances shown in Fig. 2.
Effective zone capacitance appears in Eq. (8) and effective
transmittance is used to calculate solar gains through
windows.
Tables 3 and 4 give the bounds used for the global search

in the model training for the ERS building. Thermal
conductivities (kt) for the walls, and convective heat
transfer coefficients (hi and he) for the building inside and
outside wall surfaces are used in determining thermal
resistances for each wall element in the thermal network
model depicted in Fig. 3. Densities and specific heats of
each wall element are used to determine thermal capaci-
tances for each wall element. Additionally, information on
building wall thickness and surface area is necessary. The
effective solar transmittance teff is used to determine solar
transmission through the windows.
Measured data obtained in the summer of 2001 at the

ERS and presented by Braun et al. [14] were used to
initially train and test the model. The testing consisted of a
period with night setup control (9 days from August 3 to
11, 2001) and a period with precooling and load-shifting
control (8 days from August 13 to 20, 2001). A part of the
data was used for model training, and the remainder was
used for testing. Table 5 represents four cases that were
considered for training and testing of the inverse model.
g control of building thermal mass. Building and Environment (2007),

dx.doi.org/10.1016/j.buildenv.2007.10.009


ARTICLE IN PRESS

Table 3

Material property bounds used in model training algorithm

Property Bounds Element type

External wall Internal wall Roof and ceiling Floor

kt [W/Km (Btu/hF ft)] Min 1.7E-3 (1E-3) 1.7E-3 (1E-3) 1.7E-5 (1E-5) 1.7E-3 (1E-3)

Max 1.7 (1.0) 1.7 (1.0) 8654 (5E3) 1.7 (1.0)

r*Cp [kJ/Km2 (Btu/F ft3)] Min 6.7 (0.1) 6.7 (0.1) 6.7 (0.1) 6.7 (0.1)

Max 2012 (30) 670.7 (10) 3353 (50) 2012 (30)

Table 4

Physical property bounds used in model training algorithm

Bounds teff hi [W/m2K (Btu/h ft2 1F)] he [(W/m2K (Btu/h ft2 1F)] Cz,eff [kJ/K (Btu/1F)]

Min 0.1 0.57 (0.1) 11.4 (2.0) 0 (0)

Max 0.9 5.7 (1.0) 34.1 (6.0) 1519 (800)

Table 5

Data sets for different training and testing cases

Data set

cases

Training Testing

I Night setup (9 days) Load shifting (8 days)

II Load shifting (8 days) Night setup (9 days)

III First 6 days of night

setup+load shifting (14 days)

Repetition of last 3 days

of night setup (9 days)

IV Night setup+first 5 days of

load shifting (14 days)

Repetition of last 3 days

of load shifting (9 days)

6.74

12.59

4.80

7.667.10

12.41
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Fig. 4. Erms of inverse model with four cases of training and testing data

sets.
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In cases III and IV, portions of data from both night setup
and precooling tests were used for training. In each of these
cases, only three days of data were not used for training
and these three days were repeated three times in sequence
to obtain 9-day test sequences.

Model performance is described in terms of a prediction
error defined as

Ermsð%Þ ¼
100

Qm;max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNtest

k¼1

ðQm;k �Qc;kÞ
2

,
ðN test � 1Þ

vuut , (9)

where Qm,k is measured cooling load at hour k, Qc,k is the
cooling load calculated with the inverse building model,
and Qm,max is the maximum measured cooling load for the
test data.

3.3. Model validation

Fig. 4 shows performance of the inverse model under test
conditions for the different cases outlined in Table 5.
Generally the model provides reasonably good predictions
of hourly cooling loads compared with measurements.
However, the model accuracy is sensitive to the data set
used for training. It is best to have training data for days
operating with different control strategies for adjusting
zone temperature setpoints. A better model could be
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin

doi:10.1016/j.buildenv.2007.10.009
obtained if more data were available at a wider range of
conditions.
Fig. 5 compares calculated and measured cooling loads

for two-day sequences from the test periods for night
setup and load-shifting control. All of the available
data were used for training the model. The two-day
sequences had similar ambient temperature and solar
radiation conditions. Therefore, the cooling loads shown
in Fig. 5 are useful for evaluating the impact of precooling
on load shifting as well as evaluating model performance.
The model very accurately predicts the load shifting
and peak load reduction associated with the load-shifting
control strategy. For both simulated and measured
results, the occupied period load was about 23% less for
the precooling tests and the peak load was reduced by
about 9%.
Training results from the model parameter estimation

process are presented in Table A.1 in Appendix. The sum
of all the estimated thermal capacitances for the building is
197.3MJ/K (103,869Btu/1F). In order to assess the relative
magnitude of this capacitance, it is useful to compare it to
g control of building thermal mass. Building and Environment (2007),
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a typical daily cooling load of 580.4MJ (550,071 Btu) that
occurred on the August 11 test day for night setup control.
If all of the thermal capacitance could be precooled by
about 3 1C (5.4 1F), then practically all of the daytime
cooling load could be shifted to nighttime hours. However,
only mass that is physically close to the internal zone air is
effective. For comparison, the capacitance associated with
the internal mass node described in Eq. (5) was estimated
to be about 6% of the total capacitance or 11.4MJ/K
(5993.48Btu/1F). However, energy storage for demand
limiting occurs in the internal zone node and wall, floor
and ceiling nodes closest to the zone air. The effective
thermal capacitance would probably be somewhere be-
tween the internal and total building capacitance values,
but closer to the internal capacitance.

4. Model-based demand-limiting control methodology

The load-shifting strategy used to obtain the results of
Fig. 5 was not designed to maximize peak load reduction.
Much greater peak load reduction is possible if the zone
temperatures were varied within the comfort region rather
than being held constant. Such a strategy would keep the
zone temperatures low at the beginning of occupancy and
raise them later in the day. This would have the effect of
increasing the early occupancy loads and decreasing the
late occupancy loads. This section presents a method for
determining zone temperature setpoints that minimize peak
cooling demand during a specified demand-limiting period.

A demand-limiting control strategy in this work is
defined as a strategy that aims to ‘‘limit’’ the peak cooling
load under a specified target cooling load during a demand-
limiting period by adjusting room setpoint temperature
within the comfort range. Fig. 6 represents setpoint
temperatures for both NS and demand-limiting control
strategies where t is time and T is temperature and the
subscripts ‘‘occ’’ and ‘‘unocc’’ denote unoccupied and
occupied period, ‘‘NS’’ and ‘‘demand-limiting’’ mean night
setup and demand-limiting strategies, ‘‘max’’ indicates the
upper limit of thermal comfort, i refers to start of a period,
and f means end of a period.
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin
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The term ‘‘Model-Based, demand-limiting Control’’ in
this study means that a numerical algorithm is used along
with an inverse model to determine an optimal setpoint
trajectory that minimizes peak cooling demand during a
demand-limiting period. The optimization problem for
determining a setpoint trajectory that minimizes the
maximum (peak) cooling hourly (or sub-hourly) load
during the demand-limiting period involves minimization
of the following cost function

J ¼ maxfQc;kðT z;kÞg k ¼ 1; . . . ; kDL (10)

with respect to Tz,k subject to Tocc–PCpTz,kpTocc–DL,max

and 0pQc,kpQcool,max where Qcool,max is capacity of the
cooling equipment and kDL is the final time stage during
the demand-limiting period. It was determined through
numerical optimization that the solution to this minimiza-
tion problem results in a constant cooling rate during times
g control of building thermal mass. Building and Environment (2007),
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Table 6

Parameters used in simulation study

Parameters Description Values

tunocc�PC,i Initial time of precooling

during unoccupied period

{10PM, 12AM, 2AM,

4AM, 6AM}

tocc�PC,i Initial time of precooling

during occupied period

{7AM}

tDL,i Initial time of demand-limiting

period

{7AM, 9AM, 11AM,

1PM, 3PM}

tDL,f Final time of demand-limiting

period

{6PM}

Tocc�PC Precooling setpoint

temperature during occupied

period

{19.4, 20.6, 21.7,

22.8 1C}

({67, 69, 71, 73 1F})

Tunocc–PC Precooling setpoint

temperature during unoccupied

period

{17.2, 18.3, 19.4,

20.6 1C}

({63, 65, 67, 69 1F})

Tocc�DL,max Maximum setpoint

temperature during demand-

limiting period

{23.3, 24.4, 25.6,

26.7 1C}

({74, 76, 78, 80 1F})

Tocc–NS Setpoint temperature during

occupied period under night-

setup control

{22.2, 23.3, 24.4, 25.6,

26.7 1C}

({72, 74, 76, 78, 80 1F})

Tunocc–NS Setpoint temperature during

unoccupied period under night-

setup control

{26.7 1C}

({80 1F})
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when the optimal setpoints are between the minimum and
maximum allowable setpoints and lower cooling rates
when the setpoints are constrained to the minimum or
maximum temperature constraints. With this knowledge,
the optimization problem is replaced with a numerical
scheme that determines the constant cooling rate that keeps
zone temperatures between the bounds.

A Secant method is used to find the target cooling rate
that satisfies the following residual function

f ðQc;targetÞ ¼ T z;kDL
� Tocc�DL;max ¼ 0, (11)

subject to the following constraints for k between 1 and
kDL:

Tocc�PCpTz;kpTocc�DL;max, (12)

Qc;k ¼ minðQc;target;Qmax;kÞ; k ¼ 1; . . . ; kDL, (13)

where T z;kDL
is zone temperature at the end of on-peak

period, Tocc–PC is zone temperature zone temperature at the
end of the occupied precooling period, Tocc–DL,max is upper
bound zone temperature during the on-peak period, Qmax,k

is maximum cooling rate that can be applied for hour k,
Qc,target is target load for demand-limiting during the
on-peak period, and Qc,k is the applied building cooling
rate for hour k. For each iteration of the Secant method,
the building is precooled at a constant setpoint Tunocc–PC

for a specified duration. During the on-peak period,
the setpoint is set at the lower end of the comfort limit
at Tocc–PC (e.g., 20.6 1C (69 1F)) until the cooling load
exceeds the target demand-limiting cooling load. When
the building cooling load exceeds the target load, the
setpoint temperature increases in order to limit the building
cooling load to the target load. The iteration process
adjusts the target load so as to utilize the entire comfort
range where the zone temperature at the end of occupied
period is at the upper end of comfort Tocc–DL,max (e.g.,
24.4 1C (76 1F)). After the occupied period, the setpoints
are set up to Tunocc–NS (e.g., 26.7 1C (80 1F)) until the start
of the precooling period.

5. Identifying an appropriate demand-limiting control

strategy

5.1. Approach

The trained model was used along with the demand-
limiting algorithm in order to investigate the impact of
different control variables on demand reduction and
determine an appropriate strategy to test at the ERS
building. The last day of night setup testing from 2001
(August 11) was chosen for comparison with a base case of
night setup control. Every simulation was conducted for an
identical set of 10 days in a row to erase the effects of initial
conditions and reach a steady-periodic condition. Cooling
loads occurred during occupancy from 7 AM to 6 PM.

Table 6 shows the range of parameters considered in this
study where the parameters are defined in Fig. 6. The
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin
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demand-limiting period, or on-peak period where
the demand-limiting strategy is applied, was varied by
changing the start-time (DL start time) from 7 AM to 3
PM for a fixed end time of 6 PM. The precooling period
was also changed by varying the start-time (tunocc–PC,i)
from 10 PM to 7 AM. A start-time of 7 AM for precooling
represents no unoccupied period precooling and is a
limiting case.
The performance of the demand-limiting strategy was

measured in terms of a peak load ratio (PLR) defined as
the ratio of the peak load under the demand-limiting
strategy to the peak load for the base case NS strategy or

PLR ¼
maxfQc;k;DLg

maxfQc;k;NSg@Tocc�NS¼23:3 C�ð74 �FÞ

,

for k ¼ tDL;i; . . . ; tDL;f . ð14Þ

The base case NS strategy had an unoccupied setpoint at
Tunocc–NS of 26.7 1C (80 1F) and an occupied setpoint at
Tocc–NS of 23.3 1C (74 1F).
For NS control, the impact of the occupied setpoint on

demand was also considered. In this case, a PLR under NS
(PLRNS) is defined as

PLRNS ¼
maxfQc;k;NSg@Tocc�NS

maxfQc;k;NSg@Tocc�NS¼23:3 �Cð74 �FÞ
;

for k ¼ tDL;i; . . . ; tDL;f . ð15Þ
g control of building thermal mass. Building and Environment (2007),
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5.2. Simulation results

The effects of start times for demand limiting and night
precooling on peak cooling load reduction are shown in
Fig. 7. The temperature setpoints for these results are
Tunocc–PC ¼ 19.4 1C (67 1F), Tocc–PC ¼ 20.6 1C (69 1F),
Fig. 8. Simulated NS and demand-limiting control (precooling start-time (tuno
load and (b) zone temperature.

Fig. 9. Simulated NS and demand-limiting control (precooling start-time (tuno
load and (b) zone temperature.
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Fig. 7. PLR with tunocc–PC,i varying demand-limiting start time.
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Tocc–DL,max ¼ 24.4 1C (76 1F), and Tunocc–NS ¼ 26.7 1C
(80 1F). PLR has a small dependence on the precooling
duration (tunocc–PC,i) when the demand-limiting period
begins in the afternoon. However, precooling becomes
more important as the start of the demand-limiting period
moves earlier in the day. For a demand-limiting period
beginning at 7 AM, the maximum peak load reduction
was about 23% compared to NS control. For an afternoon
start to the on-peak period, the peak load reduction for
the on-peak period was about 40% even without any
precooling.
Figs. 8 and 9 show selected detailed results from the

cases considered for Fig. 7. These figures compare hourly
cooling loads and zone temperatures for the NS and
demand-limiting strategies for a morning and afternoon
start to the demand-limiting period. For the results of
Fig. 8, the demand-limiting strategy involved precooling
the building from midnight to 7 AM and demand-limiting
began at 7 AM. The peak load under NS occurred around
5 PM in the afternoon. As a result of precooling, the
demand-limiting strategy resulted in very low loads during
the early morning hours. When the load reached the target,
cc–PC,i) of midnight and demand-limiting start-time of 7 AM): (a) cooling

cc–PC,i) of midnight and demand-limiting start-time of 1 PM): (a) cooling

g control of building thermal mass. Building and Environment (2007),
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then the setpoint was raised following a trajectory that kept
the load constant. The zone temperature setpoint increased
until it reached 24.4 1C (76 1F) at the end of the demand-
limiting period. For the results of Fig. 9, the start time for
demand limiting was 1 PM. As a result, the setpoint was
kept low during the morning hours for the demand-limiting
strategy and the late morning loads were slightly greater
than those for the NS control. With a short demand-
limiting period, the peak reduction was significantly greater
than for the results of Fig. 8. The energy storage is more
significant compared to the total load for a shorter
demand-limiting period. Although not shown here, the
application of demand-limiting control without precooling
results in a significant early morning load spike that occurs
at the start of the occupied period.

Fig. 10 shows how PLR is affected by the variation of
Tocc–PC (setpoint temperature during the off-peak occupied
period) under demand-limiting control. Other setpoint con-
ditions were Tunocc–NS ¼ 26.7 1C (801F), Tunocc–PC ¼ 19.4 1C
(67 1F), Tocc–PC ¼ 24.4 1C (76 1F), and tunocc–PC,i ¼ 12 mid-
night. Peak load reduction increases (PLR decreases) with
decreasing Tocc–PC, with a greater impact occurring for
shorter demand-limiting periods. The effect of demand-
Tocc-PC=22.8°C(73°F)

Tocc-PC=21.7°C(71°F)

Tocc-PC=20.6°C(69°F)

Tocc-PC=19.4°C(67°F)
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Fig. 10. PLR with on Tocc–PC and demand-limiting start time.
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Fig. 11. PLR with Tunocc–PC varying demand-limiting start time.
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Fig. 13. PLRNS with Tocc–NS varying demand-limiting start time.
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limiting start-time on peak load reduction becomes greater
as Tocc–PC is reduced.
Fig. 11 shows the impact of Tunocc–PC (setpoint for night-

precooling during the unoccupied period) on PLR. Other
setpoint conditions were Tunocc–NS ¼ 26.7 1C (80 1F),
Tocc�PC ¼ 20.6 1C (69 1F), Tocc–DL,max ¼ 24.4 1C (76 1F),
and tunocc–PC,i ¼ 12 midnight. The impact of Tunocc–PC is
small and PLR decreases slightly as Tunocc–PC is lowered.
Fig. 12 shows PLR as a function of Tocc–DL,max. Other

setpoint conditions were Tunocc–NS ¼ 26.7 1C (80 1F),
Tunocc–PC ¼ 19.4 1C (67 1F), Tocc–PC ¼ 20.6 1C (69 1F), and
tunocc–PC,i ¼ 12 midnight. The impact of Tocc–DL,max on
peak load reduction is greater than that of other setpoint
temperatures under demand-limiting. As Tocc–DL,max in-
creases, PLR decreases (greater peak load reduction). PLR
also decreases as the demand-limiting start-time increases
and its impact gets larger as Tocc–DL,max increases.
It is interesting to compare the peak load reduction of

demand-limiting strategies with that associated with increas-
ing the occupied setpoint for night setup control. Fig. 13
shows the impact of Tocc–NS on PLRNS. As Tocc–NS (setpoint
temperature during occupied period under NS) increases,
PLRNS decreases about 10% compared to the peak cooling
g control of building thermal mass. Building and Environment (2007),
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load under NS with an occupied setpoint temperature of
23.3 1C (74 1F). The effect on peak load reduction of raising
this setpoint is significantly less than the effect of employing
the demand-limiting control strategy.
6. Experimental evaluation of demand-limiting control

6.1. Test procedures

In order to validate the level of demand reduction
predicted with the inverse model for demand-limiting
control, testing was conducted over 14 days from August
14 to 27. The setup of the tests was identical to the setup
used by Braun et al. [14] with the same internal gains, clear
windows having no blinds, and with no additional internal
mass. The testing began on August 14 with a conventional
night setup strategy in order to establish a good baseline.
The strategy was switched to the model-based demand-
limiting strategy for the period from August 20 and to 27.
Unfortunately, the weather was very mild and overcast for
most of the test period.

Fig. 14 describes the setpoint schedules for the night
setup and model-based demand-limiting strategies imple-
mented during testing. The occupied period was from 7
AM to 6 PM, whereas the period for demand-limiting was
1 to 6 PM. With an afternoon demand-limiting period,
results from the previous section indicate that a precool
start time of 4 am is near optimal. Precooling occurred at
19.4 1C (67 1F) from 4 AM to 7 AM followed by a period of
operation with a setpoint 20.6 1C (69 1F) until 1 PM.
During the demand-limiting tests, the setpoint was raised
from 20.6 1C (691F) to 24.4 1C (76 1F) between 1 and 6 PM
using a trajectory obtained from an inverse model. The
model used forecasts of weather conditions and estimated
setpoints that would minimize the peak cooling require-
ment during the demand-limiting period. The setpoints
were entered into the main control system manually at
10-min intervals.
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin
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Simple weather prediction models were used to obtain
short-term forecasts of ambient temperature and global
solar radiation for the demand-limiting period and are
expressed as

T�a;k ¼
1

Navg

XNavg

n¼1

Ta;k�24�n

 !
þ ðTa;12 � T�a;12Þ,

for k ¼ 13; . . . ; 24, ð16Þ

G�sol;k ¼
1

Navg

XNavg

n¼1

Gsol;k�24n

 !
Gsol;12

G�sol;12

 !
,

for k ¼ 13; . . . ; 24, ð17Þ

where T*
a,k ¼ predicted ambient temperature at time k,

Ta,k ¼ actual measured ambient temperature at time k,
Navg ¼ number of days used for averaging, G*

sol,k ¼ pre-
dicted global horizontal solar radiation at time k, and
Gsol,k ¼ actual measured global horizontal solar radiation
at time k.
The weather predictions were performed within the hour

before 1 PM and then used throughout the demand-
limiting period to estimate the setpoint variation that
would minimize the peak cooling demand. Zone tempera-
tures for the general spaces were controlled at the same
setpoints as for the test rooms. Integrated RMS (root-
mean-squared) errors of weather prediction for the period
of 1 to 6 PM during testing were 1.69 1C (3.04 1F) and
216.9W/m2 (68.75 Btu/h ft2), respectively. The maximum
global horizontal solar radiation during the period was
896.3W/m2 (284.13Btu/h ft2). The ambient temperature
prediction model worked well but had difficulty predicting
sudden changes due to weather fronts. Global solar
radiation was predicted quite well on clear days but not
on partly cloudy days having rapid changes. Much better
accuracy would be possible if the weather predictions were
updated continuously, as would occur for an on-line
application.
g control of building thermal mass. Building and Environment (2007),
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Table 7

Comparison of weather conditions for selected phase 1 test days

Ambient temperature [1C (1F)] Global horizontal solar radiation [W/m2 (Btu/h-ft2)]

Date Max Min RMSD RMSD (%) Max Min RMSD RMSD (%)

August 15, 2004 24.01 (75.21) 11.0 (51.80) – – 873.8 (276.99) 10.00 (3.17) – –

August 21, 2004 23.99 (75.18) 11.92 (53.45) 1.62 (2.91) 3.87 801.2 (253.98) 10.03 (3.18) 38.08 (12.07) 4.36
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6.2. Peak demand reduction and comfort results

For most days during testing, the sky was cloudy and the
peak ambient temperature was below 32.2 1C (90 1F). There
were a few moderate test days having clear and similar
ambient temperature conditions that allow comparison of
demand-limiting and night setup control strategies. Table 7
shows comparison of ambient conditions for two selected
days, August 15 and 21, which are thought to be closest
among the test days for the night setup and demand-
limiting strategies. Minimum, maximum, and integrated
root-mean-squared differences (RMSD) in hourly values
for ambient temperature and solar radiations between the
two comparable days are shown. The ambient tempera-
tures on August 21 were a little lower than those for
August 15 during the morning and early afternoon. In
addition, the solar was a little lower throughout the day.

Fig. 15 compares combined cooling loads for the eight
test zones operated under the model-based demand-limit-
ing strategy with that under night setup control for the
selected days. Under night setup control, the peak cooling
load occurs late in the day due to solar gains through west
facing windows. The peak for the demand-limiting strategy
occurs during the morning hours when the facility is
operated at a low setpoint temperature. During the
demand-limiting period (1 to 6 PM), the peak cooling load
was reduced by about 30% compared to night setup
control. However, additional demand reduction would
have been possible if the setpoint trajectory had produced a
flatter cooling load profile. The actual load profile was not
flat due to imperfect building modeling and weather
predictions. The model could be improved with more data
for training. The weather predictions could be improved if
Please cite this article as: Lee K-h, Braun JE. Model-based demand-limitin
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the forecasts were updated every hour during application
of the strategy. Even so, the demand reduction results were
very significant on this relatively cool day.
Fig. 16 shows comfort survey results for morning and

afternoon periods on days where demand-limiting was
employed during testing. The variable N denotes the
number of participants in the comfort survey for each
time period. Because of a small number of participants, the
comfort results from the survey were compressed into three
categories: too cool (combines cold and cool), comfortable
(combines slightly cool, neutral, and slightly warm) and
too warm (combines warm and hot). A slight majority of
the occupants felt uncomfortably ‘too cool’ in the morning.
This was probably due to precooling that occurred at
19.4 1C (67 1F) during the early morning from 4 to 7 AM.
In the afternoon, most of the occupants were comfortable.
Fortunately, the impact of morning precooling tempera-
ture on demand reduction is relatively small as demon-
strated in the previous section. As a result, there is an
opportunity to raise this temperature to improve comfort
conditions. Lee and Braun [12] found a relatively small
impact on occupant comfort for this facility with strategies
that precooled at 21.1 1C (70 1F) and performed demand
limiting between 21.1 1C (70 1F) and 25.5 1C (78 1F).

7. Conclusions

A demand-limiting control methodology was developed
that uses an inverse building model trained with field
measurements. The methodology was applied to a building
representative of small commercial applications. The inverse
g control of building thermal mass. Building and Environment (2007),
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Table A.1

Estimated parameters of inverse model for ERS building

Parameter Value Parameter Value

Ce,1 (kJ/K) 45357.35 (23883.59 Btu/1F) Re,1 (K/W) 0.0007545 (0.000398 1Fh/Btu)

Ce,2 (kJ/K) 5421.59 (2854.82 Btu/1F) Re,2 (K/W) 0.008206 (0.004329 1Fh/Btu)

Ci,1 (kJ/K) 3096.83 (1630.68 Btu/1F) Re,3 (K/W) 0.01602 (0.008449 1Fh/Btu)

Ci,2 (kJ/K) 11402.98 (6004.41 Btu/1F) Ri,1 (K/W) 0.00003412 (0.000018 1Fh/Btu)

Cr,1 (kJ/K) 218293.19 (114945.54 Btu/1F) Ri,2 (K/W) 140 (73.85 1Fh/Btu)

Cr,2 (kJ/K) 948653.92 (499527.89 Btu/1F) Ri,3 (K/W) 0.001331 (0.000702 1Fh/Btu)

Cf,1 (kJ/K) 27936.52 (14710.39 Btu/1F) Rr,1 (K/W) 0.00007772 (0.000041 1Fh/Btu)

Cf,2 (kJ/K) 1188.67 (625.91 Btu/1F) Rr,2 (K/W) 0.0003431 (0.000181 1Fh/Btu)

Cz,eff (kJ/K) 11382.22 (5993.48 Btu/1F) Rr,3 (K/W) 0.006201 (0.003271 1Fh/Btu)

teff 0.697 Rf,1 (K/W) 0.003945 (0.002081 1Fh/Btu)

Rwin (K/W) 0.006587 (0.003475 1Fh/Btu) Rf,2 (K/W) 0.002237 (0.001180 1Fh/Btu)

Rf,3 (K/W) 0.002775 (0.001464 1Fh/Btu)

The total thermal capacitance for the ERS building was calculated as the sum of all the node capacitance values and found to be 197.3MJ/K (103869Btu/

1F).
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model was able to predict cooling loads within about 5%
when trained with 14 days of data from Braun et al. [14]
where precooling and night setup control strategies were
applied to this facility. More importantly, the model very
accurately predicted load shifting and peak load reduction for
the load-shifting strategy tested by Braun et al. [14]. The
trained model was then used in combination with the
demand-limiting scheme to investigate the impact of different
control strategy parameters on peak demand reduction. For
afternoon demand-limiting periods, peak load reduction is
relatively insensitive to the temperature and start time for
precooling during the unoccupied period. In this case, most of
the potential for demand reduction is realized when the zone
temperature is maintained at the lower end of the comfort
range for morning occupied hours and then adjusted upwards
during the demand-limiting period to the high end of the
comfort range following a trajectory that produces a constant
cooling load. Predicted peak load reduction was about 30%
for a demand-limiting period between 1 and 6 PM with
zone temperatures maintained within the range of comfort.
Unoccupied period precooling becomes important when
demand-limiting is initiated during morning hours.

The model-based, demand-limiting strategy was imple-
mented at the site resulting in a 30% reduction in peak
cooling load when compared to conventional control for a
5-h afternoon demand-limiting period. These results are
consistent with the simulation results.

Small commercial buildings are good candidates for
utilization of thermal storage in building mass to reduce peak
demands. However, even greater potential is possible for large
commercial buildings because of a smaller ratio of external
area to thermal mass, and the use of heavier weight materials.
Appendix A

Table A.1 gives building parameters that were estimated
for the ERS building through training using data from
both the Phase 1 and Phase 2 test periods.
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